Avoiding Optimal Mean Robust PCA/2DPCA with Non-Greedy l1-Norm Maximization

نویسندگان

  • Minnan Luo
  • Feiping Nie
  • Xiaojun Chang
  • Yi Yang
  • Alexander Hauptmann
  • Qinghua Zheng
چکیده

1 -Norm Maximization Minnan Luo, Feiping Nie,2⇤ Xiaojun Chang, Yi Yang, Alexander Hauptmann, Qinghua Zheng 1 Shaanxi Province Key Lab of Satellite-Terrestrial Network , Department of Computer Science, Xi’an Jiaotong University, P. R. China. 2 School of Computer Science and Center for Optical Imagery Analysis and Learning, Northwestern Polytechnical University, P. R. China. Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney. School of Computer Science, Carnegie Mellon University, PA, USA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Avoiding Optimal Mean Robust PCA/2DPCA with Non-greedy ℓ1-Norm Maximization

Robust principal component analysis (PCA) is one of the most important dimension reduction techniques to handle high-dimensional data with outliers. However, the existing robust PCA presupposes that the mean of the data is zero and incorrectly utilizes the Euclidean distance based optimal mean for robust PCA with `1-norm. Some studies consider this issue and integrate the estimation of the opti...

متن کامل

Non-Greedy L21-Norm Maximization for Principal Component Analysis

Principal Component Analysis (PCA) is one of the most important unsupervised methods to handle highdimensional data. However, due to the high computational complexity of its eigen decomposition solution, it hard to apply PCA to the large-scale data with high dimensionality. Meanwhile, the squared L2-norm based objective makes it sensitive to data outliers. In recent research, the L1-norm maximi...

متن کامل

Robust Principal Component Analysis with Non-Greedy l1-Norm Maximization

Principal Component Analysis (PCA) is one of the most important methods to handle highdimensional data. However, the high computational complexitymakes it hard to apply to the large scale data with high dimensionality, and the used 2-norm makes it sensitive to outliers. A recent work proposed principal component analysis based on 1-normmaximization, which is efficient and robust to outliers. In...

متن کامل

Robust Tensor Clustering with Non-Greedy Maximization

Tensors are increasingly common in several areas such as data mining, computer graphics, and computer vision. Tensor clustering is a fundamental tool for data analysis and pattern discovery. However, there usually exist outlying data points in realworld datasets, which will reduce the performance of clustering. This motivates us to develop a tensor clustering algorithm that is robust to the out...

متن کامل

Robust Sparse 2D Principal Component Analysis for Object Recognition

We extensively investigate robust sparse two dimensional principal component analysis (RS2DPCA) that makes the best of semantic, structural information and suppresses outliers in this paper. The RS2DPCA combines the advantages of sparsity, 2D data format and L1-norm for data analysis. We also prove that RS2DPCA can offer a good solution of seeking spare 2D principal components. To verify the pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016